

BATIMETRIA DERIVADA DE IMÁGENES SATELITALES A PARTIR DE IMÁGENES DEL SATÉLITE VRSS2 SUCRE

CF DANIEL ROJAS CONTRERAS
MSC. EN HIDROGRAFÍA
ESPECIALISTA EN CARTOGRAFÍA MARINA Y PROCESAMIENTO DE DATOS

Impulsando el desarrollo integral de las naciones a través del uso de datos y aplicaciones espaciales.

AGENDA

- ✓ Introducción
- ✓ Relaciones de Impacto Beneficio
- ✓ Características del Satélite Sucre VRSS-2
- ✓ Procedimientos
- ✓ Resultados Caso de Estudio
- ✓ Proyectos a Futuro
- ✓ Conclusiones

PROYECTO BATIMETRÍA DERIVADA DE IMÁGENES SATELITALES IMPACTO / BENEFICIO

- 1. DETERMINACIÓN DE PROFUNDIDADES EN ÁREAS TURÍSTICAS NO HIDROGRAFÍADAS;
- 2. CARTOGRAFÍA MARINA PARA LA NAVEGACIÓN EN ÁREAS NO MAPEADAS
- 3. GESTIÓN DE INFORMACIÓN PARA EL ESTABLECIMIENTO DE POSIBLES PUERTOS DE EMBARCACIONES RECREATIVAS O INSTALACIONES EN TIERRA EN APOYO A EMBARCACIONES TURÍSTICAS O DESARROLLOS TURISITICOS.
- 4. CONOCIMIENTO DEL ENTORNO MARINO PARA APOYAR LAS DECISIONES DE GESTIÓN DE GOBIERNO;
- 5. MAYOR BATIMETRÍA COSTERA, CON COBERTURA COMPLETA Y ACTUALIZADA;

Jotajana, Delta Amacuro - Venezuela. Camera HRC, MSS Sensor. Resolution: 3 m. Capture date: 01/04/2018. VRSS-2.

VRSS-2 SATÉLITE SUCRE

ASPECTOS TÉCNICOS

TIEMPO LOCAL DEL NODO DESCENDENTE:

10:30 am.

TIPO DE ÓRBITA:

SÍNCRONA CON EL SOL.

PERÍODO DE REPETICIÓN (NADIR):

101 días.

PERÍODO DE REVISITA:

4 días con roll de 35°

ALTURA: 645,80 km

PESO: 1000 kg

SENSOR HRC

(High Resolution Camera)

Resolución Radiométrica: 10 bits

Ancho de Barrido: 30 km

Resolución Espacial (m)	Bandas Espectrales	Rangos Espectrales (nm)
1	PAN	500 - 800
3	MSS 1	450 - 520
3	MSS 2	520 - 590
3	MSS 3	630 - 690
3	MSS 4	770 - 890

SENSOR IRC

(Infra Red Camera)

Resolución Radiométrica: 12 bits Ancho de Barrido: 30 km

SWIR (SHORT WAVE INFRARED)

Resolución Bandas **Rangos Espectrales Espectrales** (nm) 900 - 11001

30 2 1180 - 130030 1550 - 1700

Espacial

(m)

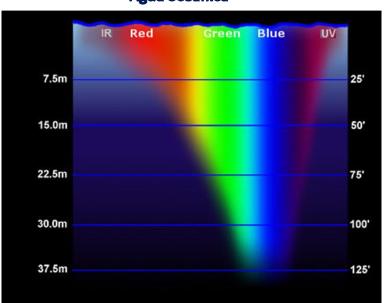
30

LWIR (LONG WAVE INFRARED)

Resolución Espacial (m)	Bandas Espectrales	Rangos Espectrales (nm)
60	1	10300 - 11300
60	2	11500 - 12500

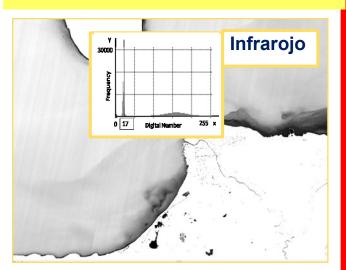
LOS PASOS IMPORTANTES EN EL PROCEDIMIENTO DE DERIVADO DEL SATÉLITE INCLUYEN:

- PRETRATAMIENTO
- SEPARACIÓN DE AGUA
- FILTRACIÓN ESPACIAL
- APLICACIÓN DEL ALGORITMO DE BATIMETRÍA
- IDENTIFICACIÓN DE LA PROFUNDIDAD DE EXTINCIÓN
- GEORREFERENCIACIÓN VERTICAL

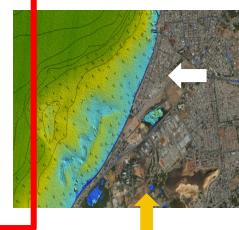

Nota:

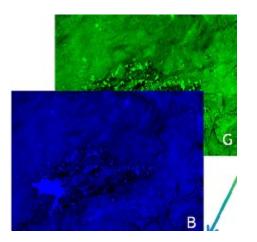
Para un algoritmo que puede ser utilizado por la comunidad hidrográfica en un software GIS, un algoritmo de transformación de relaciones basado en un enfoque de optimización proporciona una solución robusta que no requiere muestrear el entorno. Sin embargo esta propuesta permite a través de dos métodos la captura de datos en campo para mayor precisión de los resultados

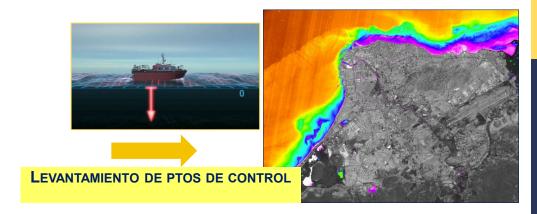
Enfoque de optimización que asume la columna de agua invariable verticalmente. Una subcategoría de este es un enfoque de relación que deriva la batimetría basada en la relación log (o relación de registros) de dos bandas.

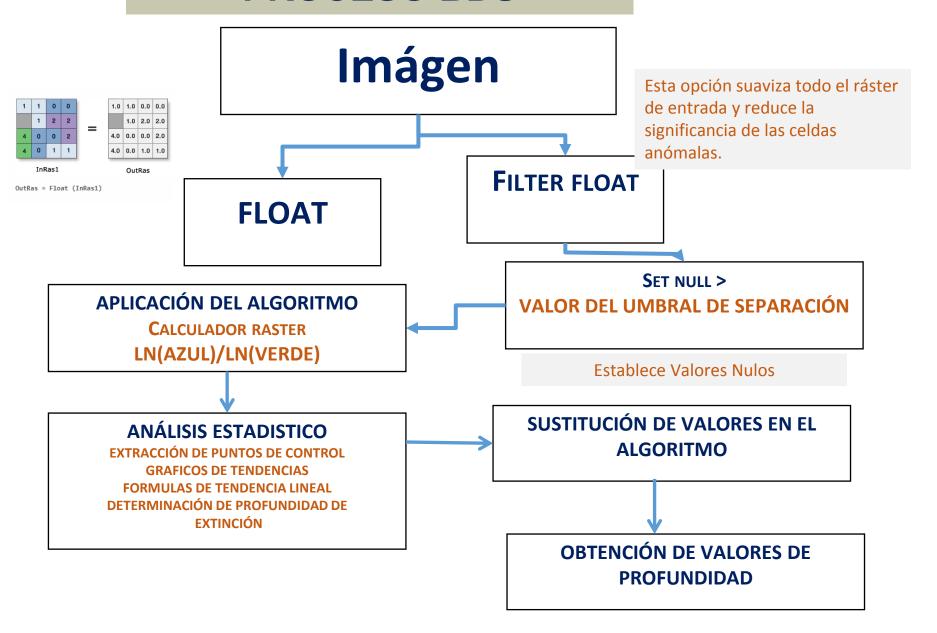

Penetración de luz

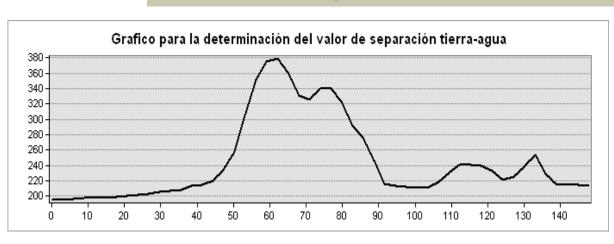
Agua oceánica

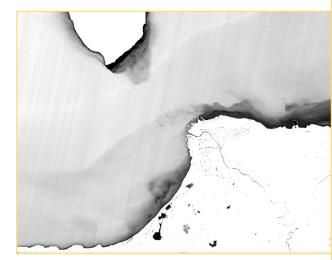

Proceso de Análisis de Imágenes


IDENTIFICAR LA TIERRA / EL AGUA




GEORREFERENCIACIÓN
AL CERO HIDROGRÁFICO





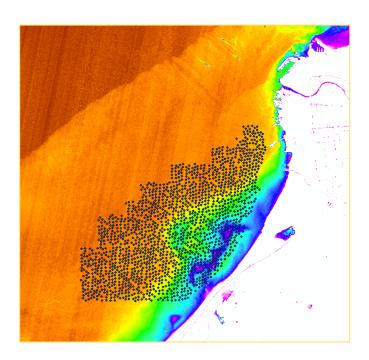
PROCESO BDS

Proceso de separación agua-tierra

UMBRAL DE SEPARACIÓN AGUA-TIERRA

+/- 220

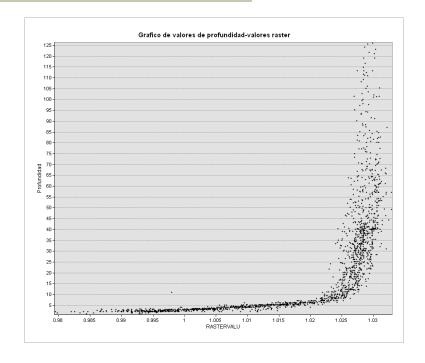
ALGORITMO BATIMETRICO

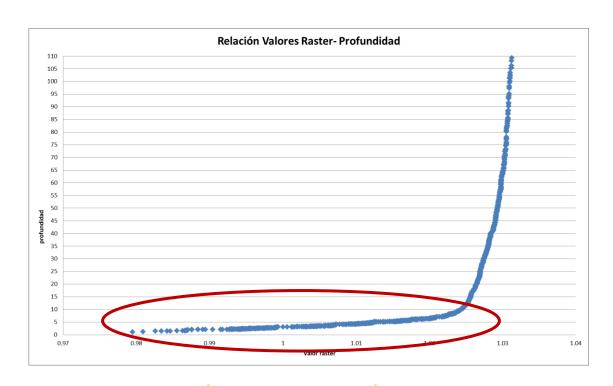


✓ rastercalc2_cumana30ene20 Value High: 1.0771

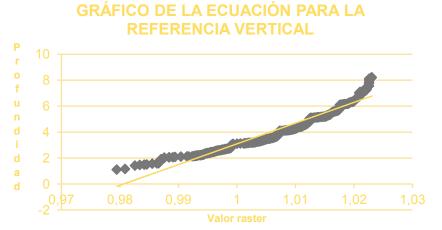
CALCULADOR RASTER LN(AZUL)/LN(VERDE)

$$\mathbf{z} = m_1 \left(\frac{\ln \left(L_{obs}(Banda_{azul}) \right)}{\ln \left(L_{obs}(Banda_{verde}) \right)} \right) - m_0$$

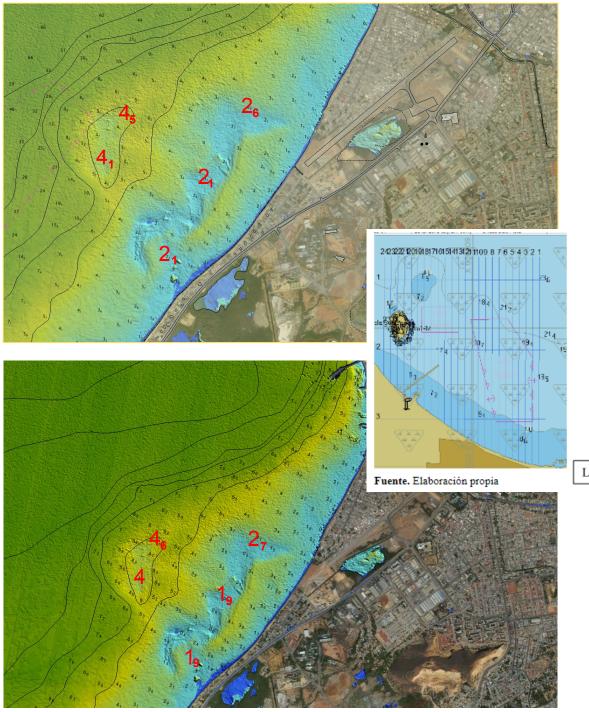

EXTRACCIÓN DE VALORES RASTER


ÁREA MUESTREADA 10,5km²

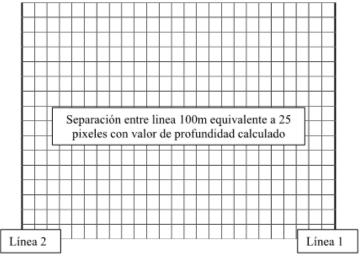
PUNTOS DE CONTROL


ANÁLISIS ESTADISTICO

CALCULO DE RELACIÓN R²



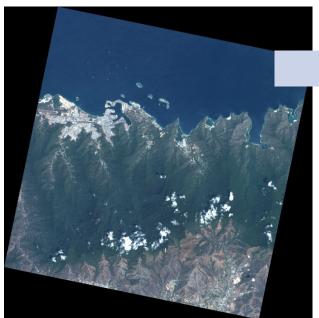
Las estimaciones SDB de las imágenes del VRSS2 Sucre, derivadas de la relación de banda azul / verde exhibieron una profundidad de extinción de atenuación de agua de 8,8 metros con un coeficiente de determinación R 2 = 0.9298. Al realizar las modelaciones respectivas se pudo evidenciar que las aguas ubicadas al norte de Cumaná son altamente dinámicas afectadas principalmente por las corrientes generadas en el Golfo de Cariaco y por la acción del viento



y= 159.64x-156.54 R²⁼ 0.9298

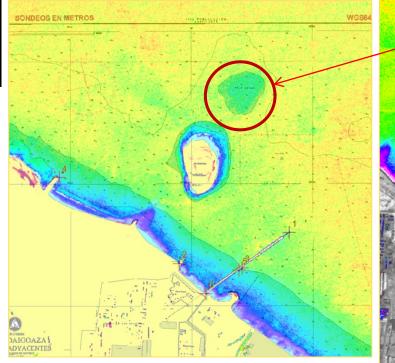
(159.64x{In(azul)/In(verde)} -156.54

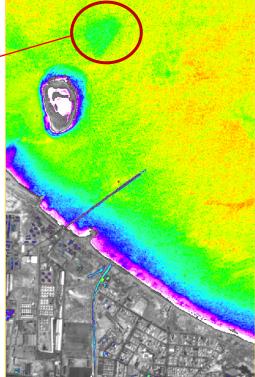
DATOS LEVANTAMIENTO 2011



PROFUNDIDADES
OBTENIDAS DE
IMAGENES SATELITALES

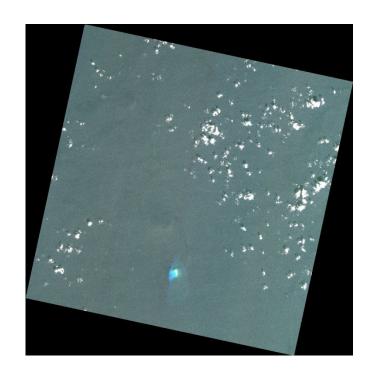
COSTO DEL LEVANTAMIENTO

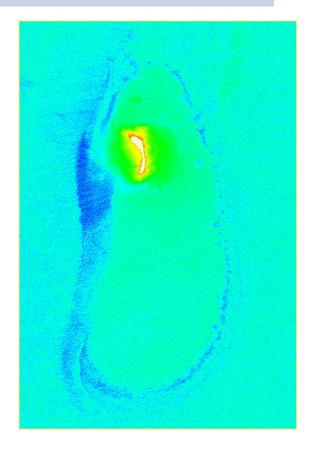

	Acustico (EM 2040)	LIDAR (CZMIL)	SATELITE SUCRE VRSS2
LEVANTAMIENTO (20 KM ²)	50.000	30.000	200
Duración (horas por km²)	140	1,6	0
PROCESAMIENTO (HORAS POR KM ²)	420	80	60
COSTO TOTAL (POR KM ²)	66.000	34.000	2000
Duración total(horas por KM²)	560	80	60


OTROS EJERCICIOS

VRSS2_MSS_0291_0327_20180301_L2B_1129181858944

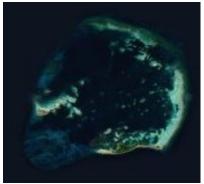
VISUALIZACIÓN DEL BAJO LARNE PUERTO CABELLO





OTROS EJERCICIOS

VRSS-2_MSS_0278_0305_20181024_L2B_1129182911229



PRÓXIMOS PASOS

Archipielago Aves (Aves de Sotavento) Área total aprox. 72 Km²

Archipielago Aves (Aves de Barlovento) Área total aprox. 67 Km²

Archipielago Los Roques Área total aprox. 600 Km²

CONCLUSIONES

- □ BDS PUEDE SER DE GRAN AYUDA PARA CUBRIR LOS VACIOS

 DE INFORMACIÓN EN EL CARTOGRAFÍADO A UN COSTO

 RAZONABLE.
- BDS TIENE GRAN POTENCIAL PARA EL EMPLEO EN NUESTRO PAÍS CON USO DE LAS IMAGENES DEL SATELITE VRSS-2 GRAN MARISCAL ANTONIO JOSÉ DE SUCRE.
- DONDE NO EXISTA INFORMACIÓN BATIMETRICA ES DE UN GRAN BENEFICIO.
- LOS LUGARES DONDE SE REQUIERA MAYOR PRECISIÓN DEBERAN SER LEVANTADOS CON MBES Ó CON LIDAR.
- □ LA BDS PROPORCIONA UN GRAN AVANCE ENTRE LOS PAISES

 DE LATINOAMERICA Y EL CARIBE EN EL EMPLEO DE ESTA

 HERRAMIENTA.

CIENCIA Y PATRIA

GRACIAS POR SU ATENCIÓN

CC Daniel Rojas Contreras Magister en Hidrografía Especialista Categoría B en Cartografía Marina y Procesamiento de Datos OHI/FIG/CBJ